Effective Field Theory for Density Functional Theory III

Dick Furnstahl

Department of Physics
Ohio State University

September, 2005
I. Overview of EFT, RG, DFT for fermion many-body systems
II. EFT/DFT for dilute Fermi systems
III. Refinements: Toward EFT/DFT for nuclei
IV. Loose ends and challenges, Cold atoms, RG/DFT

Recall Our Example [nucl-th/0212071]

Power Counting Terms in Energy Functionals

- Scale contributions according to average density or $\left\langle k_{F}\right\rangle$

Power Counting Terms in Energy Functionals

- Scale contributions according to average density or $\left\langle k_{F}\right\rangle$

Power Counting Terms in Energy Functionals

- Scale contributions according to average density or $\left\langle k_{F}\right\rangle$

Power Counting Terms in Energy Functionals

- Scale contributions according to average density or $\left\langle k_{F}\right\rangle$

Power Counting Terms in Energy Functionals

- Scale contributions according to average density or $\left\langle k_{F}\right\rangle$

- Reasonable estimates \Longrightarrow truncation errors understood

Questions about DFT and Nuclear Structure

- How is Kohn-Sham DFT more than mean field?
- Where are the approximations? How do we truncate?
- How do we include long-range effects (correlations)?
- What can you calculate in a DFT approach?
- What about single-particle properties? Excited states?
- How does pairing work in DFT?
- Can we (should we) decouple pp and ph?
- Are higher-order contributions important?
- What about broken symmetries? (translation, rotation, ...)
- How do we connect to the free NN...N interaction?
- What about chiral EFT or low-momentum interactions/RG?

Questions about DFT and Nuclear Structure

- How is Kohn-Sham DFT more than mean field?
- Where are the approximations? How do we truncate?
- How do we include long-range effects (correlations)?
- What can you calculate in a DFT approach?
- What about single-particle properties? Excited states?
- How does pairing work in DFT?
- Can we (should we) decouple pp and ph?
- Are higher-order contributions important?
- What about broken symmetries? (translation, rotation, ...)
- How do we connect to the free NN...N interaction?
- What about chiral EFT or low-momentum interactions/RG?

Outline

Extensions to DFT/EFT

Pairing in Kohn-Sham DFT

Summary III

Outline

Extensions to DFT/EFT

Pairing in Kohn-Sham DFT

Summary III

LDA I: Kohn-Sham vs. Thomas-Fermi

- Entire energy functional is treated in LDA in Thomas-Fermi
- In Kohn-Sham DFT, treat kinetic energy non-locally
\Longrightarrow shell structure in atoms:

$$
\mathrm{Ar} \quad \mathrm{Z}=18
$$

LDA I: Kohn-Sham vs. Thomas-Fermi

- and in cold atoms in a trap:

$$
\mathrm{N}_{\mathrm{F}}=2, \mathrm{~A}=20, \mathrm{~g}=2, \mathrm{a}_{\mathrm{s}}=-0.160
$$

Beyond Kohn-Sham LDA: Kinetic Energy Density

- Skyrme E is functional of ρ and $\tau \equiv\left\langle\nabla \psi^{\dagger} \cdot \nabla \psi\right\rangle$

$$
\begin{aligned}
E[\rho, \tau, \mathbf{J}]= & \int d^{3} x\left\{\frac{1}{2 M} \tau+\frac{3}{8} t_{0} \rho^{2}+\frac{1}{16} t_{3} \rho^{2+\alpha}+\frac{1}{16}\left(3 t_{1}+5 t_{2}\right) \rho \tau\right. \\
& \left.+\frac{1}{64}\left(9 t_{1}-5 t_{2}\right)(\nabla \rho)^{2}-\frac{3}{4} W_{0} \rho \boldsymbol{\nabla} \cdot \mathbf{J}+\frac{1}{32}\left(t_{1}-t_{2}\right) \mathbf{J}^{2}\right\}
\end{aligned}
$$

Beyond Kohn-Sham LDA: Kinetic Energy Density

- Skyrme E is functional of ρ and $\tau \equiv\left\langle\nabla \psi^{\dagger} \cdot \nabla \psi\right\rangle$

$$
\begin{aligned}
E[\rho, \tau, \mathbf{J}]= & \int d^{3} x\left\{\frac{1}{2 M} \tau+\frac{3}{8} t_{0} \rho^{2}+\frac{1}{16} t_{3} \rho^{2+\alpha}+\frac{1}{16}\left(3 t_{1}+5 t_{2}\right) \rho \tau\right. \\
& \left.+\frac{1}{64}\left(9 t_{1}-5 t_{2}\right)(\nabla \rho)^{2}-\frac{3}{4} W_{0} \rho \nabla \cdot \mathbf{J}+\frac{1}{32}\left(t_{1}-t_{2}\right) \mathbf{J}^{2}\right\}
\end{aligned}
$$

- To do this in DFT/EFT, add to Lagrangian $+\eta(\mathbf{x}) \nabla \psi^{\dagger} \nabla \psi$

$$
\Gamma[\rho, \tau]=W[J, \eta]-\int J(x) \rho(x)-\int \eta(x) \tau(x)
$$

Beyond Kohn-Sham LDA: Kinetic Energy Density

- Skyrme E is functional of ρ and $\tau \equiv\left\langle\nabla \psi^{\dagger} \cdot \nabla \psi\right\rangle$

$$
\begin{aligned}
E[\rho, \tau, \mathbf{J}]= & \int d^{3} x\left\{\frac{1}{2 M} \tau+\frac{3}{8} t_{0} \rho^{2}+\frac{1}{16} t_{3} \rho^{2+\alpha}+\frac{1}{16}\left(3 t_{1}+5 t_{2}\right) \rho \tau\right. \\
& \left.+\frac{1}{64}\left(9 t_{1}-5 t_{2}\right)(\boldsymbol{\nabla} \rho)^{2}-\frac{3}{4} W_{0} \rho \boldsymbol{\nabla} \cdot \mathbf{J}+\frac{1}{32}\left(t_{1}-t_{2}\right) \mathbf{J}^{2}\right\}
\end{aligned}
$$

- To do this in DFT/EFT, add to Lagrangian $+\eta(\mathbf{x}) \nabla \psi^{\dagger} \nabla \psi$

$$
\Gamma[\rho, \tau]=W[J, \eta]-\int J(x) \rho(x)-\int \eta(x) \tau(x)
$$

- Two Kohn-Sham potentials:

$$
J_{0}(\mathbf{x})=\frac{\delta \Gamma_{\text {int }}[\rho, \tau]}{\delta \rho(\mathbf{x})} \quad \text { and } \quad \eta_{0}(\mathbf{x})=\frac{\delta \Gamma_{\text {int }}[\rho, \tau]}{\delta \tau(\mathbf{x})}
$$

- Kohn-Sham equation \Longrightarrow defines $\frac{1}{2 M^{*}(\mathbf{x})} \equiv \frac{1}{2 M}-\eta_{0}(\mathbf{x})$:

$$
\left(-\nabla \cdot \frac{1}{2 M^{*}(\mathbf{x})} \nabla+v_{\mathrm{ext}}(\mathbf{x})-J_{0}(\mathbf{x})\right) \phi_{\alpha}(\mathbf{x})=\epsilon_{\alpha} \phi_{\alpha}(\mathbf{x})
$$

First Step: HF Diagrams With ∇ 's [nucl-th/0408014]

- Consider bowtie diagrams from vertices with derivatives:

$$
\mathcal{L}_{\text {eft }}=\ldots+\frac{C_{2}}{16}\left[(\psi \psi)^{\dagger}\left(\psi \stackrel{\nabla}{\nabla}^{2} \psi\right)+\text { h.c. }\right]+\frac{C_{2}^{\prime}}{8}(\psi \stackrel{\rightharpoonup}{\nabla} \psi)^{\dagger} \cdot(\psi \stackrel{\rightharpoonup}{\nabla} \psi)+\ldots
$$

First Step: HF Diagrams With ∇ 's [nucl-th/0408014]

- Consider bowtie diagrams from vertices with derivatives:

$$
\mathcal{L}_{\mathrm{eft}}=\ldots+\frac{C_{2}}{16}\left[(\psi \psi)^{\dagger}\left(\psi \overleftrightarrow{\nabla}^{2} \psi\right)+\text { h.c. }\right]+\frac{C_{2}^{\prime}}{8}(\psi \overleftrightarrow{\nabla} \psi)^{\dagger} \cdot(\psi \stackrel{\rightharpoonup}{\nabla} \psi)+\ldots
$$

- Energy density in Kohn-Sham LDA $(\nu=2)$:

$$
\mathcal{E}_{\text {int }}[\rho]=\ldots+\frac{C_{2}}{8}\left[\frac{3}{5}\left(\frac{6 \pi^{2}}{\nu}\right)^{2 / 3} \rho^{8 / 3}\right]+\frac{3 C_{2}^{\prime}}{8}\left[\frac{3}{5}\left(\frac{6 \pi^{2}}{\nu}\right)^{2 / 3} \rho^{8 / 3}\right]+\ldots
$$

First Step: HF Diagrams With ∇ 's [nucl-th/0408014]

- Consider bowtie diagrams from vertices with derivatives:

$$
\mathcal{L}_{\mathrm{eft}}=\ldots+\frac{C_{2}}{16}\left[(\psi \psi)^{\dagger}\left(\psi \overleftrightarrow{\nabla}^{2} \psi\right)+\text { h.c. }\right]+\frac{C_{2}^{\prime}}{8}(\psi \overleftrightarrow{\nabla} \psi)^{\dagger} \cdot(\psi \stackrel{\rightharpoonup}{\nabla} \psi)+\ldots
$$

- Energy density in Kohn-Sham LDA $(\nu=2)$:

$$
\mathcal{E}_{\text {int }}[\rho]=\ldots+\frac{C_{2}}{8}\left[\frac{3}{5}\left(\frac{6 \pi^{2}}{\nu}\right)^{2 / 3} \rho^{8 / 3}\right]+\frac{3 C_{2}^{\prime}}{8}\left[\frac{3}{5}\left(\frac{6 \pi^{2}}{\nu}\right)^{2 / 3} \rho^{8 / 3}\right]+\ldots
$$

- Energy density in Kohn-Sham with $\tau(\nu=2)$:

$$
\mathcal{E}_{\text {int }}[\rho, \tau]=\ldots+\frac{C_{2}}{8}\left[\rho \tau+\frac{3}{4}(\nabla \rho)^{2}\right]+\frac{3 C_{2}^{\prime}}{8}\left[\rho \tau-\frac{1}{4}(\nabla \rho)^{2}\right]+\ldots
$$

Power Counting Estimates Work for Gradients!

Comparing Skyrme and Dilute Functionals

- Skyrme energy density functional (for $N=Z$)

$$
\begin{gathered}
E[\rho, \tau, \mathbf{J}]=\int d^{3} x\left\{\frac{\tau}{2 M}+\frac{3}{8} t_{0} \rho^{2}+\frac{1}{16}\left(3 t_{1}+5 t_{2}\right) \rho \tau+\frac{1}{64}\left(9 t_{1}-5 t_{2}\right)(\nabla \rho)^{2}\right. \\
-
\end{gathered}
$$

- Dilute $\rho \tau \mathbf{J}$ energy density functional for $\nu=4\left(V_{\text {external }}=0\right)$

$$
\begin{gathered}
E[\rho, \tau, \mathbf{J}]=\int d^{3} x\left\{\frac{\tau}{2 M}+\frac{3}{8} C_{0} \rho^{2}+\frac{1}{16}\left(3 C_{2}+5 C_{2}^{\prime}\right) \rho \tau+\frac{1}{64}\left(9 C_{2}-5 C_{2}^{\prime}\right)(\nabla \rho)^{2}\right. \\
\left.-\frac{3}{4} C_{2}^{\prime \prime} \rho \nabla \cdot \mathbf{J}+\frac{C_{1}}{2 M} C_{0}^{2} \rho^{7 / 3}+\frac{C_{2}}{2 M} C_{0}^{3} \rho^{8 / 3}+\frac{1}{16} D_{0} \rho^{3}+\cdots\right\}
\end{gathered}
$$

Comparing Skyrme and Dilute Functionals

- Skyrme energy density functional (for $N=Z$)

$$
\begin{aligned}
E[\rho, \tau, \mathbf{J}]=\int d^{3} x & \left\{\frac{\tau}{2 M}+\frac{3}{8} t_{0} \rho^{2}+\frac{1}{16}\left(3 t_{1}+5 t_{2}\right) \rho \tau+\frac{1}{64}\left(9 t_{1}-5 t_{2}\right)(\nabla \rho)^{2}\right. \\
& \left.-\frac{3}{4} W_{0} \rho \boldsymbol{\nabla} \cdot \mathbf{J}+\frac{1}{16} t_{3} \rho^{2+\alpha}+\cdots\right\}
\end{aligned}
$$

- Dilute $\rho \tau \mathbf{J}$ energy density functional for $\nu=4\left(V_{\text {external }}=0\right)$

$$
\begin{array}{rl}
E[\rho, \tau, \mathbf{J}]=\int d^{3} x & x \frac{\tau}{2 M}+\frac{3}{8} C_{0} \rho^{2}+\frac{1}{16}\left(3 C_{2}+5 C_{2}^{\prime}\right) \rho \tau+\frac{1}{64}\left(9 C_{2}-5 C_{2}^{\prime}\right)(\nabla \rho)^{2} \\
& \left.-\frac{3}{4} C_{2}^{\prime \prime} \rho \nabla \cdot \mathbf{J}+\frac{C_{1}}{2 M} C_{0}^{2} \rho^{7 / 3}+\frac{C_{2}}{2 M} C_{0}^{3} \rho^{8 / 3}+\frac{1}{16} D_{0} \rho^{3}+\cdots\right\}
\end{array}
$$

- Same functional as dilute Fermi gas with $t_{i} \leftrightarrow C_{i}$
- equivalent $a_{0} \approx-2-3 \mathrm{fm}$ but $\left|k_{F} a_{p}\right|,\left|k_{\mathrm{F}} r_{0}\right|<1$ (with $a_{p}<0$)
- missing non-analytic terms, NNN, ...

Kohn-Sham LDA ρ VS. $\rho \tau$ [Anirban Bhattacharyya]

Kohn-Sham LDA ρ VS. $\rho \tau$ [Anirban Bhattacharyya]

Kohn-Sham LDA ρ vs. $\rho \tau$: Differences

$a_{\rho}=a_{s}$	E / A	$\sqrt{\left\langle r^{2}\right\rangle}$
ρ	7.66	2.87
$\rho \tau$	7.65	2.87

$a_{p}=2 a_{s}$	E / A	$\sqrt{\left\langle r^{2}\right\rangle}$
ρ	8.33	3.10
$\rho \tau$	8.30	3.09

Effective Mass and the Single-Particle Spectrum

- Effective mass M^{*} related to single-particle levels

Effective Mass and the Single-Particle Spectrum

- Uniform system: $\varepsilon_{\mathbf{k}}^{\rho}-\varepsilon_{\mathbf{k}}^{\rho \tau}=\frac{\pi}{\nu}\left[(\nu-1) a_{s}^{2} r_{s}+2(\nu+1) a_{p}^{3}\right] \frac{k_{F}^{2}-\mathbf{k}^{2}}{2 M} \rho$

How is the Full G Related to G_{ks} ? [nucl-th/0410105]

 (2)
How is the Full G Related to G_{ks} ? [nucl-th/0410105]

- Add a non-local source $\xi\left(x^{\prime}, x\right)$ coupled to $\psi(x) \psi^{\dagger}\left(x^{\prime}\right)$:

$$
Z[J, \xi]=e^{i W[J, \xi]}=\int D \psi D \psi^{\dagger} e^{i \int d^{4} x\left[\mathcal{L}+J(x) \psi^{\dagger}(x) \psi(x)+\int d^{4} x^{\prime} \psi(x) \xi\left(x, x^{\prime}\right) \psi^{\dagger}\left(x^{\prime}\right)\right]}
$$

How is the Full G Related to $G_{K s}$? [nucl-th/0410105]

- Add a non-local source $\xi\left(x^{\prime}, x\right)$ coupled to $\psi(x) \psi^{\dagger}\left(x^{\prime}\right)$:

$$
Z[J, \xi]=e^{i W[J, \xi]}=\int D \psi D \psi^{\dagger} e^{i \int d^{4} x\left[\mathcal{L}+J(x) \psi^{\dagger}(x) \psi(x)+\int d^{4} x^{\prime} \psi(x) \xi\left(x, x^{\prime}\right) \psi^{\dagger}\left(x^{\prime}\right)\right]}
$$

- With $\Gamma[\rho, \xi]=\Gamma_{0}[\rho, \xi]+\Gamma_{\text {int }}[\rho, \xi]$,

$$
G\left(x, x^{\prime}\right)=\left.\frac{\delta W}{\delta \xi}\right|_{J}=\left.\frac{\delta \Gamma}{\delta \xi}\right|_{\rho}=G_{\mathrm{ks}}\left(x, x^{\prime}\right)+G_{\mathrm{ks}}\left[\frac{1}{i} \frac{\delta \Gamma_{\mathrm{int}}}{\delta G_{\mathrm{ks}}}+\frac{\delta \Gamma_{\mathrm{int}}}{\delta \rho}\right] G_{\mathrm{ks}}
$$

G and G_{ks} Yield the Same Density by Construction

- Claim: $\rho_{\mathrm{ks}}(\mathbf{x})=-i \nu G_{\mathrm{KS}}^{0}\left(x, x^{+}\right)$equals $\rho(\mathbf{x})=-i \nu G\left(x, x^{+}\right)$
- Start with

G and G_{ks} Yield the Same Density by Construction

- Claim: $\rho_{\mathrm{ks}}(\mathbf{x})=-i \nu G_{\mathrm{KS}}^{0}\left(x, x^{+}\right)$equals $\rho(\mathbf{x})=-i \nu G\left(x, x^{+}\right)$
- Start with

- Simple diagrammatic demonstration:

- Densities agree by construction!

G and G_{ks} Yield the Same Density by Construction

- Claim: $\rho_{\mathrm{ks}}(\mathbf{x})=-i \nu G_{\mathrm{KS}}^{0}\left(x, x^{+}\right)$equals $\rho(\mathbf{x})=-i \nu G\left(x, x^{+}\right)$
- Start with

- Simple diagrammatic demonstration:

- Densities agree by construction!
- Is the Kohn-Sham basis a useful one for G ?

How Close is G_{KS} to G ?

- It depends on what sources are used!

$$
G\left(x, x^{\prime}\right)=\left.\frac{\delta W}{\delta \xi}\right|_{J}=\left.\frac{\delta \Gamma}{\delta \xi}\right|_{\rho}=G_{\mathrm{ks}}\left(x, x^{\prime}\right)+G_{\mathrm{ks}}\left[\frac{1}{i} \frac{\delta \Gamma_{\mathrm{int}}}{\delta G_{\mathrm{ks}}}+\frac{\delta \Gamma_{\mathrm{int}}}{\delta \rho}\right] G_{\mathrm{ks}}
$$

- Nonrel. \mathbf{M}^{*} in $\Gamma[\rho]$ vs. $\Gamma[\rho, \tau]$ vs.
- Covariant case at LO:

$$
\Gamma\left[\rho_{v}\right] \text { vs. } \Gamma\left[\rho_{v}, \rho_{s}\right]
$$

- Higher orders?

Kohn-Sham DFT and "Mean-Field" Models

(1) Kohn-Sham propagator always has "mean-field" structure \Longrightarrow doesn't mean that correlations aren't included in $\Gamma[\rho]$!
(2) $n(\mathbf{k})=\left\langle a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}\right\rangle$ is resolution dependent (not observable!) \Longrightarrow operator related to experiment is more complicated
(3) Is the Kohn-Sham basis a useful one for other observables?

Approximating and Fitting the Functional

- Need a truncated expansion to carry out inversion method
- Chiral EFT expansion is well-defined
- Power counting for low-momentum interactions?
- Gradient expansions?
- Density matrix expansion
- Semiclassical expansions used in Coulomb DFT
- Derivative expansion techniques developed for (one-loop) effective actions?
- How should we "fine tune" a DFT functional?
- What does EFT say about what knobs to adjust?
- EFT tells about theoretical errors
\Longrightarrow use in fits (e.g., Bayesian)

Outline

Extensions to DFT/EFT

Pairing in Kohn-Sham DFT

Summary III

Experimental Evidence for Pairing in Nuclei

$$
\begin{aligned}
& B(N, Z)= \\
& \quad(15.6 \mathrm{MeV})\left[1-1.5\left(\frac{N-Z}{A}\right)^{2}\right] A \\
& \quad-(17.2 \mathrm{MeV}) A^{2 / 3}-(0.70 \mathrm{MeV}) \frac{Z^{2}}{A^{1 / 3}} \\
& \quad+(6 \mathrm{MeV})\left[(-1)^{N}+(-1)^{Z}\right] / A^{1 / 2}
\end{aligned}
$$

- Odd-even staggering of binding energies

Experimental Evidence for Pairing in Nuclei

Figure 6.1. Excitation spectra of the ${ }_{50} \mathrm{Sn}$ isotopes.

- Odd-even staggering of binding energies
- Energy gap in spectra of deformed nuclei
- Low-lying 2^{+}states in even nuclei
- Deformations and moments of inertia (theory requires pairing)

Table of the Nuclides

Table of the Nuclides

Effective Actions and Broken Symmetries

- Natural framework for spontaneous symmetry breaking
- e.g., test for zero-field magnetization M in a spin system
- introduce an external field H to break rotational symmetry
- Legendre transform Helmholtz free energy $F(H)$:

$$
\text { invert } M=-\partial F(H) / \partial H \quad \Longrightarrow \quad \Gamma[M]=F[H(M)]+M H(M)
$$

- since $H=\partial \Gamma / \partial M \longrightarrow 0$, minimize Γ to find ground state

Pairing from Effective Actions

- For pairing, the broken symmetry is a $U(1)$ [phase] symmetry
- Textbook effective action treatment in condensed matter
- introduce contact interaction: $g \psi^{\dagger} \psi^{\dagger} \psi \psi$
- Hubbard-Stratonovich with auxiliary pairing field $\hat{\Delta}(x)$ coupled to $\psi^{\dagger} \psi^{\dagger} \Longrightarrow$ eliminate contact interaction
- construct $1 \mathrm{PI} \Gamma[\Delta]$ with $\Delta=\langle\hat{\Delta}\rangle$, look for $\frac{\delta \Gamma}{\delta \Delta}=0$
- to leading order in the loop expansion (mean field) $\Longrightarrow B C S$ weak-coupling gap equation with gap Δ

Pairing from Effective Actions

- For pairing, the broken symmetry is a $U(1)$ [phase] symmetry
- Textbook effective action treatment in condensed matter
- introduce contact interaction: $g \psi^{\dagger} \psi^{\dagger} \psi \psi$
- Hubbard-Stratonovich with auxiliary pairing field $\hat{\Delta}(x)$ coupled to $\psi^{\dagger} \psi^{\dagger} \Longrightarrow$ eliminate contact interaction
- construct $1 \mathrm{PI} \Gamma[\Delta]$ with $\Delta=\langle\hat{\Delta}\rangle$, look for $\frac{\delta \Gamma}{\delta \Delta}=0$
- to leading order in the loop expansion (mean field) $\Longrightarrow B C S$ weak-coupling gap equation with gap Δ
- Alternative: Combine an expansion (e.g., EFT) and the inversion method for effective actions (Fukuda et al.)
- external current $j(x)$ coupled to pair density breaks symmetry
- natural generalization of Kohn-Sham DFT (Bulgac et al.)
- cf. DFT with nonlocal source (Oliveira et al.; Kurth et al.)

Local Composite Effective Action with Pairing

- Generating functional with sources J, j coupled to densities:

$$
Z[J, j]=e^{-W[J, j]}=\int D\left(\psi^{\dagger} \psi\right) \exp \left\{-\int d^{4} x\left[\mathcal{L}+J(x) \psi_{\alpha}^{\dagger} \psi_{\alpha}+j(x)\left(\psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger}+\psi_{\downarrow} \psi_{\uparrow}\right)\right]\right\}
$$

- Densities found by functional derivatives wrt J, j :

$$
\begin{gathered}
\rho(x) \equiv\left\langle\psi^{\dagger}(x) \psi(x)\right\rangle_{J, j}=\left.\frac{\delta W[J, j]}{\delta J(x)}\right|_{j} \\
\phi(x) \equiv\left\langle\psi_{\uparrow}^{\dagger}(x) \psi_{\downarrow}^{\dagger}(x)+\psi_{\downarrow}(x) \psi_{\uparrow}(x)\right\rangle_{J, j}=\left.\frac{\delta W[J, j]}{\delta j(x)}\right|_{J}
\end{gathered}
$$

Local Composite Effective Action with Pairing

- Generating functional with sources J, j coupled to densities:

$$
Z[J, j]=e^{-W_{[J, J]}}=\int D\left(\psi^{\dagger} \psi\right) \exp \left\{-\int d^{4} x\left[\mathcal{L}+J(x) \psi_{\alpha}^{\dagger} \psi_{\alpha}+j(x)\left(\psi_{\uparrow}^{\dagger} \psi^{\dagger}+\psi_{\downarrow} \psi_{\uparrow}\right)\right]\right\}
$$

- Densities found by functional derivatives wrt J, j :

$$
\begin{gathered}
\rho(x) \equiv\left\langle\psi^{\dagger}(x) \psi(x)\right\rangle_{,, j}=\left.\frac{\delta W[J, j]}{\delta J(x)}\right|_{j} \\
\phi(x) \equiv\left\langle\psi_{\uparrow}^{\dagger}(x) \psi_{\downarrow}^{\dagger}(x)+\psi_{\downarrow}(x) \psi_{\uparrow}(x)\right\rangle_{, j j}=\left.\frac{\delta W[J, j]}{\delta j(x)}\right|_{J}
\end{gathered}
$$

- Effective action $\Gamma[\rho, \phi]$ by functional Legendre transformation:

$$
\left\ulcorner[\rho, \phi]=W[J, j]-\int d^{4} x J(x) \rho(x)-\int d^{4} x j(x) \phi(x)\right.
$$

Claims (Hopes?) About Effective Action

- $\Gamma[\rho, \phi] \propto$ (free) energy functional $E[\rho, \phi]$
- at finite temperature, the proportionality constant is β
- The sources are given by functional derivatives wrt ρ and ϕ

$$
\frac{\delta E[\rho, \phi]}{\delta \rho(\mathbf{x})}=J(\mathbf{x}) \quad \text { and } \quad \frac{\delta E[\rho, \phi]}{\delta \phi(\mathbf{x})}=j(\mathbf{x})
$$

- but the sources are zero in the ground state \Longrightarrow determine ground-state $\rho(\mathbf{x})$ and $\phi(\mathbf{x})$ by stationarity:

$$
\left.\frac{\delta E[\rho, \phi]}{\delta \rho(\mathbf{x})}\right|_{\rho=\rho_{\mathrm{gs}}, \phi=\phi_{\mathrm{gs}}}=\left.\frac{\delta E[\rho, \phi]}{\delta \phi(\mathbf{x})}\right|_{\rho=\rho_{\mathrm{g},}, \phi=\phi_{\mathrm{gs}}}=0
$$

- This is Hohenberg-Kohn DFT extended to pairing!

Claims (Hopes?) About Effective Action

- $\Gamma[\rho, \phi] \propto$ (free) energy functional $E[\rho, \phi]$
- at finite temperature, the proportionality constant is β
- The sources are given by functional derivatives wrt ρ and ϕ

$$
\frac{\delta E[\rho, \phi]}{\delta \rho(\mathbf{x})}=J(\mathbf{x}) \quad \text { and } \quad \frac{\delta E[\rho, \phi]}{\delta \phi(\mathbf{x})}=j(\mathbf{x})
$$

- but the sources are zero in the ground state \Longrightarrow determine ground-state $\rho(\mathbf{x})$ and $\phi(\mathbf{x})$ by stationarity:

$$
\left.\frac{\delta E[\rho, \phi]}{\delta \rho(\mathbf{x})}\right|_{\rho=\rho_{\mathrm{gs}}, \phi=\phi_{\mathrm{gs}}}=\left.\frac{\delta E[\rho, \phi]}{\delta \phi(\mathbf{x})}\right|_{\rho=\rho_{\mathrm{g}}, \phi=\phi_{\mathrm{gs}}}=0
$$

- This is Hohenberg-Kohn DFT extended to pairing!
- We need a method to carry out the Legendre transforms
- To get Kohn-Sham DFT, apply inversion methods
- Can we renormalize consistently?

Kohn-Sham Inversion Method (General)

- Order-by-order matching in counting parameter λ

$$
\begin{aligned}
\text { diagrams } & \Longrightarrow W[J, j, \lambda]=W_{0}[J, j]+\lambda W_{1}[J, j]+\lambda^{2} W_{2}[J, j]+\cdots \\
\text { assume } & \Longrightarrow J[\rho, \phi, \lambda]=J_{0}[\rho, \phi]+\lambda J_{1}[\rho, \phi]+\lambda^{2} J_{2}[\rho, \phi]+\cdots \\
\text { assume } & \Longrightarrow j[\rho, \phi, \lambda]=j_{0}[\rho, \phi]+\lambda j_{1}[\rho, \phi]+\lambda^{2} j_{2}[\rho, \phi]+\cdots \\
\text { derive } & \Longrightarrow \Gamma[\rho, \phi, \lambda]=\Gamma_{0}[\rho, \phi]+\lambda \Gamma_{1}[\rho, \phi]+\lambda^{2} \Gamma_{2}[\rho, \phi]+\cdots
\end{aligned}
$$

- Start with exact expressions for Γ and ρ

$$
\Gamma[\rho, \phi]=W[J, j]-\int J \rho-\int j \phi \Longrightarrow \rho(x)=\frac{\delta W[J, j]}{\delta J(x)}, \quad \phi(x)=\frac{\delta W[J, j]}{\delta j(x)}
$$

\Longrightarrow plug in expansions with ρ, ϕ treated as order unity

Kohn-Sham Inversion Method (General)

- Order-by-order matching in counting parameter λ

$$
\begin{aligned}
\text { diagrams } & \Longrightarrow W[J, j, \lambda]=W_{0}[J, j]+\lambda W_{1}[J, j]+\lambda^{2} W_{2}[J, j]+\cdots \\
\text { assume } & \Longrightarrow J[\rho, \phi, \lambda]=J_{0}[\rho, \phi]+\lambda J_{1}[\rho, \phi]+\lambda^{2} J_{2}[\rho, \phi]+\cdots \\
\text { assume } & \Longrightarrow j[\rho, \phi, \lambda]=j_{0}[\rho, \phi]+\lambda j_{1}[\rho, \phi]+\lambda^{2} j_{2}[\rho, \phi]+\cdots \\
\text { derive } & \Longrightarrow \Gamma[\rho, \phi, \lambda]=\Gamma_{0}[\rho, \phi]+\lambda \Gamma_{1}[\rho, \phi]+\lambda^{2} \Gamma_{2}[\rho, \phi]+\cdots
\end{aligned}
$$

- $0^{\text {th }}$ order is Kohn-Sham system with potentials $J_{0}(\mathbf{x})$ and $j_{0}(\mathbf{x})$ \Longrightarrow exact densities $\rho(\mathbf{x})$ and $\phi(\mathbf{x})$ by construction

$$
\Gamma_{0}[\rho, \phi]=W_{0}\left[J_{0}, j_{0}\right]-\int J_{0} \rho-\int j_{0} \phi \Longrightarrow \rho(x)=\frac{\delta W_{0}[]}{\delta J_{0}(x)}, \quad \phi(x)=\frac{\delta W_{0}[]}{\delta j_{0}(x)}
$$

Kohn-Sham Inversion Method (General)

- Order-by-order matching in counting parameter λ
diagrams $\Longrightarrow W[J, j, \lambda]=W_{0}[J, j]+\lambda W_{1}[J, j]+\lambda^{2} W_{2}[J, j]+\cdots$
assume $\Longrightarrow J[\rho, \phi, \lambda]=J_{0}[\rho, \phi]+\lambda J_{1}[\rho, \phi]+\lambda^{2} J_{2}[\rho, \phi]+\cdots$
assume $\Longrightarrow j[\rho, \phi, \lambda]=j_{0}[\rho, \phi]+\lambda j_{1}[\rho, \phi]+\lambda^{2} j_{2}[\rho, \phi]+\cdots$
derive $\Longrightarrow \Gamma[\rho, \phi, \lambda]=\Gamma_{0}[\rho, \phi]+\lambda \Gamma_{1}[\rho, \phi]+\lambda^{2} \Gamma_{2}[\rho, \phi]+\cdots$
- $0^{\text {th }}$ order is Kohn-Sham system with potentials $J_{0}(\mathbf{x})$ and $j_{0}(\mathbf{x})$ \Longrightarrow exact densities $\rho(\mathbf{x})$ and $\phi(\mathbf{x})$ by construction

$$
\Gamma_{0}[\rho, \phi]=W_{0}\left[J_{0}, j_{0}\right]-\int J_{0} \rho-\int j_{0} \phi \Longrightarrow \rho(x)=\frac{\delta W_{0}[]}{\delta J_{0}(x)}, \quad \phi(x)=\frac{\delta W_{0}[]}{\delta j_{0}(x)}
$$

- Introduce single-particle orbitals and solve (cf. HFB)

$$
\begin{array}{cc}
\left(\begin{array}{cc}
h_{0}(\mathbf{x})-\mu_{0} & j_{0}(\mathbf{x}) \\
j_{0}(\mathbf{x}) & -h_{0}(\mathbf{x})+\mu_{0}
\end{array}\right)\binom{u_{i}(\mathbf{x})}{v_{i}(\mathbf{x})}=E_{i}\binom{u_{i}(\mathbf{x})}{v_{i}(\mathbf{x})} \\
\text { where } & h_{0}(\mathbf{x}) \equiv-\frac{\nabla^{2}}{2 M}+V_{\text {trap }}(\mathbf{x})-J_{0}(\mathbf{x})
\end{array}
$$

Diagrammatic Expansion of W_{i}

- Lines in diagrams are KS Nambu-Gor'kov Green's functions

$$
\mathbf{G}=\left(\begin{array}{l}
\left\langle T_{\tau} \psi_{\uparrow}(x) \psi_{\uparrow}^{\dagger}\left(x^{\prime}\right)\right\rangle_{0}\left\langle T_{\tau} \psi_{\uparrow}(x) \psi_{\downarrow}\left(x^{\prime}\right)\right\rangle_{0} \\
\left\langle T_{\tau} \psi_{\downarrow}^{\dagger}(x) \psi_{\uparrow}^{\dagger}\left(x^{\prime}\right)\right\rangle_{0}
\end{array}\left\langle T_{\tau} \psi_{\downarrow}^{\dagger}(x) \psi_{\downarrow}\left(x^{\prime}\right)\right\rangle_{0}\right) \equiv\left(\begin{array}{cc}
G_{\mathrm{ks}}^{0} & F_{\mathrm{ks}}^{0} \\
F_{\mathrm{ks}}^{0 \dagger} & -\widetilde{G}_{\mathrm{ks}}^{0}
\end{array}\right)
$$

- Extra diagrams enforce inversion (here removes anomalous)
- In frequency space, the Kohn-Sham Green's functions are

$$
\begin{gathered}
G_{\mathrm{ks}}^{0}\left(\mathbf{x}, \mathbf{x}^{\prime} ; \omega\right)=\sum_{j}\left[\frac{u_{j}(\mathbf{x}) u_{j}^{*}\left(\mathbf{x}^{\prime}\right)}{i \omega-E_{j}}+\frac{v_{j}\left(\mathbf{x}^{\prime}\right) v_{j}^{*}(\mathbf{x})}{i \omega+E_{j}}\right] \\
F_{\mathrm{ks}}^{0}\left(\mathbf{x}, \mathbf{x}^{\prime} ; \omega\right)=-\sum_{j}\left[\frac{u_{j}(\mathbf{x}) v_{j}^{*}\left(\mathbf{x}^{\prime}\right)}{i \omega-E_{j}}-\frac{u_{j}\left(\mathbf{x}^{\prime}\right) v_{j}^{*}(\mathbf{x})}{i \omega+E_{j}}\right]
\end{gathered}
$$

Kohn-Sham Self-Consistency Procedure

- Same iteration procedure as in Skyrme or RMF with pairing
- In terms of the orbitals, the fermion density is

$$
\rho(\mathbf{x})=2 \sum_{i}\left|v_{i}(\mathbf{x})\right|^{2}
$$

and the pair density is

$$
\phi(\mathbf{x})=\sum_{i}\left[u_{i}^{*}(\mathbf{x}) v_{i}(\mathbf{x})+u_{i}(\mathbf{x}) v_{i}^{*}(\mathbf{x})\right]
$$

- The chemical potential μ_{0} is fixed by $\int \rho(\mathbf{x})=A$
- Diagrams for $\Gamma[\rho, \phi] \propto E_{0}[\rho, \phi]+E_{\text {int }}[\rho, \phi]$ yields KS potentials

$$
\left.J_{0}(\mathbf{x})\right|_{\rho=\rho_{\mathrm{gs}}}=\left.\frac{\delta E_{\mathrm{int}}[\rho, \phi]}{\delta \rho(\mathbf{x})}\right|_{\rho=\rho_{\mathrm{gs}}} \text { and }\left.j_{0}(\mathbf{x})\right|_{\phi=\phi_{\mathrm{gs}}}=\left.\frac{\delta E_{\mathrm{int}}[\rho, \phi]}{\delta \phi(\mathbf{x})}\right|_{\phi=\phi_{\mathrm{gs}}}
$$

Kohn-Sham Self-Consistency Procedure

- Same iteration procedure as in Skyrme or RMF with pairing
- In terms of the orbitals, the fermion density is

$$
\rho(\mathbf{x})=2 \sum_{i}\left|v_{i}(\mathbf{x})\right|^{2}
$$

and the pair density is (warning: unrenormalized!)

$$
\phi(\mathbf{x})=\sum_{i}\left[u_{i}^{*}(\mathbf{x}) v_{i}(\mathbf{x})+u_{i}(\mathbf{x}) v_{i}^{*}(\mathbf{x})\right]
$$

- The chemical potential μ_{0} is fixed by $\int \rho(\mathbf{x})=A$
- Diagrams for $\Gamma[\rho, \phi] \propto E_{0}[\rho, \phi]+E_{\text {int }}[\rho, \phi]$ yields KS potentials

$$
\left.J_{0}(\mathbf{x})\right|_{\rho=\rho_{\mathrm{gs}}}=\left.\frac{\delta E_{\mathrm{int}}[\rho, \phi]}{\delta \rho(\mathbf{x})}\right|_{\rho=\rho_{\mathrm{gs}}} \text { and }\left.j_{0}(\mathbf{x})\right|_{\phi=\phi_{\mathrm{gs}}}=\left.\frac{\delta E_{\mathrm{int}}[\rho, \phi]}{\delta \phi(\mathbf{x})}\right|_{\phi=\phi_{\mathrm{gs}}}
$$

Divergences: Uniform Dilute Fermi System

- Generating functional with constant sources μ and j :

$$
\begin{gathered}
e^{-W[\mu,]]}=\int D\left(\psi^{\dagger} \psi\right) \exp \left\{-\int d^{4} x\left[\psi_{\alpha}^{\dagger}\left(\frac{\partial}{\partial \tau}-\frac{\nabla^{2}}{2 M}-\mu\right) \psi_{\alpha}+\frac{C_{0}}{2} \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}\right.\right. \\
\left.\left.+j\left(\psi_{\uparrow} \psi_{\downarrow}+\psi_{\downarrow}^{\dagger} \psi_{\uparrow}^{\dagger}\right)\right]\right\}
\end{gathered}
$$

- cf. adding integration over auxiliary field $\int D\left(\Delta^{*}, \Delta\right) e^{-\frac{1}{\left|C_{0}\right|} \int|\Delta|^{2}}$ \Longrightarrow shift variables to eliminate $\psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}$ for $\Delta^{*} \psi_{\uparrow} \psi_{\downarrow}$

Divergences: Uniform Dilute Fermi System

- Generating functional with constant sources μ and j :

$$
\begin{gathered}
e^{-W[\mu,]]}=\int D\left(\psi^{\dagger} \psi\right) \exp \left\{-\int d^{4} x\left[\psi_{\alpha}^{\dagger}\left(\frac{\partial}{\partial \tau}-\frac{\nabla^{2}}{2 M}-\mu\right) \psi_{\alpha}+\frac{C_{0}}{2} \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}\right.\right. \\
\left.\left.+j\left(\psi_{\uparrow} \psi_{\downarrow}+\psi_{\downarrow}^{\dagger} \psi_{\uparrow}^{\dagger}\right)\right]\right\}
\end{gathered}
$$

- cf. adding integration over auxiliary field $\int D\left(\Delta^{*}, \Delta\right) e^{-\frac{1}{\left|C_{0}\right|} \int|\Delta|^{2}}$ \Longrightarrow shift variables to eliminate $\psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}$ for $\Delta^{*} \psi_{\uparrow} \psi_{\downarrow}$
- New divergences because of $j \Longrightarrow$ e.g., expand to $\mathcal{O}\left(j^{2}\right)$
- Same linear divergence as in 2-to-2 scattering

Divergences: Uniform Dilute Fermi System

- Generating functional with constant sources μ and j :

$$
\begin{gathered}
e^{-W[\mu,]]}=\int D\left(\psi^{\dagger} \psi\right) \exp \left\{-\int d^{4} x\left[\psi_{\alpha}^{\dagger}\left(\frac{\partial}{\partial \tau}-\frac{\nabla^{2}}{2 M}-\mu\right) \psi_{\alpha}+\frac{C_{0}}{2} \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}\right.\right. \\
\left.\left.+j\left(\psi_{\uparrow} \psi_{\downarrow}+\psi_{\downarrow}^{\dagger} \psi_{\uparrow}^{\dagger}\right)+\frac{1}{2} \zeta j^{2}\right]\right\}
\end{gathered}
$$

- cf. adding integration over auxiliary field $\int D\left(\Delta^{*}, \Delta\right) e^{-\frac{1}{\left|\sigma_{0}\right|} \int|\Delta|^{2}}$ \Longrightarrow shift variables to eliminate $\psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}$ for $\Delta^{*} \psi_{\uparrow} \psi_{\downarrow}$
- New divergences because of $j \Longrightarrow$ e.g., expand to $\mathcal{O}\left(j^{2}\right)$

$$
W[\mu, j]=\cdots+\underset{j}{\times-\cdots}+\cdots-\cdots
$$

- Same linear divergence as in 2-to-2 scattering
- Renormalization: Add counterterm $\frac{1}{2} \zeta|j|^{2}$ to \mathcal{L} (cf. Zinn-Justin)
- Additive to W (cf. $|\Delta|^{2}$) \Longrightarrow no effect on scattering
- How to determine ζ ? Energy interpretation of Γ ?

Use Dimensional Regularization (DR)

- Generalize Papenbrock \& Bertsch DR/MS calculation
- DR/PDS \Longrightarrow generate explicit Λ to "check" renormalization
- Basic free-space integral in D spatial dimensions

$$
\left(\frac{\Lambda}{2}\right)^{3-D} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{p^{2}-k^{2}+i \epsilon} \xrightarrow{\text { PDS }}-\frac{1}{4 \pi}(\Lambda+i p) \quad\left[\text { note: } \int \frac{1}{\epsilon_{k}^{0}} \rightarrow \frac{M \Lambda}{2 \pi}\right]
$$

- Renormalizing free-space scattering yields:
$C_{0}(\Lambda)=\frac{4 \pi a_{s}}{M}+\frac{4 \pi a_{s}^{2}}{M} \Lambda+\mathcal{O}\left(\Lambda^{2}\right)=C_{0}^{(1)}+C_{0}^{(2)}+\cdots \longrightarrow \frac{4 \pi a_{s}}{M} \frac{1}{1-a_{s} \Lambda}$
- Recover DR/MS with $\Lambda=0$

Use Dimensional Regularization (DR)

- Generalize Papenbrock \& Bertsch DR/MS calculation
- DR/PDS \Longrightarrow generate explicit Λ to "check" renormalization
- Basic free-space integral in D spatial dimensions
$\left(\frac{\Lambda}{2}\right)^{3-D} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{p^{2}-k^{2}+i \epsilon} \xrightarrow{\text { PDS }}-\frac{1}{4 \pi}(\Lambda+i p) \quad\left[\right.$ note: $\left.\int \frac{1}{\epsilon_{k}^{0}} \rightarrow \frac{M \Lambda}{2 \pi}\right]$
- Renormalizing free-space scattering yields:
$C_{0}(\Lambda)=\frac{4 \pi a_{s}}{M}+\frac{4 \pi a_{s}^{2}}{M} \Lambda+\mathcal{O}\left(\Lambda^{2}\right)=C_{0}^{(1)}+C_{0}^{(2)}+\cdots \longrightarrow \frac{4 \pi a_{s}}{M} \frac{1}{1-a_{s} \Lambda}$
- Recover DR/MS with $\Lambda=0$
- E.g., verify NLO renormalization \Longrightarrow independent of Λ

Kohn-Sham Non-Interacting System

- Bare density ρ :

$$
\begin{aligned}
\rho & =-\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial \mu_{0}}=\frac{2}{V} \sum_{\mathbf{k}} v_{k}^{2} \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}}\left(1-\frac{\epsilon_{k}^{0}-\mu_{0}}{E_{k}}\right)
\end{aligned}
$$

- Bare pair density ϕ_{B} :

$$
\begin{aligned}
\phi_{B} & =\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial j_{0}}=\frac{2}{V} \sum_{\mathbf{k}} u_{k} v_{k} \\
& =-\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{j_{0}}{E_{k}}
\end{aligned}
$$

- j_{0} plays role of constant gap

$$
E_{k}=\sqrt{\left(\epsilon_{k}^{0}-\mu_{0}\right)^{2}+j_{0}^{2}}, \quad \epsilon_{k}^{0}=\frac{k^{2}}{2 M}
$$

Kohn-Sham Non-Interacting System

- Bare density ρ :

$$
\begin{aligned}
\rho & =-\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial \mu_{0}}=\frac{2}{V} \sum_{\mathbf{k}} v_{k}^{2} \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}}\left(1-\frac{\epsilon_{k}^{0}-\mu_{0}}{E_{k}}\right)
\end{aligned}
$$

- Bare pair density ϕ_{B} :

$$
\begin{aligned}
\phi_{B} & =\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial j_{0}}=\frac{2}{V} \sum_{\mathbf{k}} u_{k} v_{k} \\
& =-\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{j_{0}}{E_{k}}
\end{aligned}
$$

- jo plays role of constant gap

$$
E_{k}=\sqrt{\left(\epsilon_{k}^{0}-\mu_{0}\right)^{2}+j_{0}^{2}}, \quad \epsilon_{k}^{0}=\frac{k^{2}}{2 M}
$$

Kohn-Sham Non-Interacting System

- Bare density ρ :

$$
\begin{aligned}
\rho & =-\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial \mu_{0}}=\frac{2}{V} \sum_{\mathbf{k}} v_{k}^{2} \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}}\left(1-\frac{\epsilon_{k}^{0}-\mu_{0}}{E_{k}}\right)
\end{aligned}
$$

- Bare pair density ϕ_{B} :

$$
\begin{aligned}
\phi_{B} & =\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial j_{0}}=\frac{2}{V} \sum_{\mathbf{k}} u_{k} v_{k} \\
& =-\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{j_{0}}{E_{k}}
\end{aligned}
$$

- jo plays role of constant gap

$$
E_{k}=\sqrt{\left(\epsilon_{k}^{0}-\mu_{0}\right)^{2}+j_{0}^{2}}, \quad \epsilon_{k}^{0}=\frac{k^{2}}{2 M}
$$

Kohn-Sham Non-Interacting System

- Bare density ρ :

$$
\begin{aligned}
\rho & =-\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial \mu_{0}}=\frac{2}{V} \sum_{\mathbf{k}} v_{k}^{2} \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}}\left(1-\frac{\epsilon_{k}^{0}-\mu_{0}}{E_{k}}\right)
\end{aligned}
$$

- Bare pair density ϕ_{B} :

$$
\begin{aligned}
\phi_{B} & =\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial j_{0}}=\frac{2}{V} \sum_{\mathbf{k}} u_{k} v_{k} \\
& =-\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{j_{0}}{E_{k}}
\end{aligned}
$$

- j_{0} plays role of constant gap

$$
E_{k}=\sqrt{\left(\epsilon_{k}^{0}-\mu_{0}\right)^{2}+j_{0}^{2}}, \quad \epsilon_{k}^{0}=\frac{k^{2}}{2 M}
$$

Kohn-Sham Non-Interacting System

- Bare density ρ :

$$
\begin{aligned}
\rho & =-\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial \mu_{0}}=\frac{2}{V} \sum_{\mathbf{k}} v_{k}^{2} \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}}\left(1-\frac{\epsilon_{k}^{0}-\mu_{0}}{E_{k}}\right)
\end{aligned}
$$

- Bare pair density ϕ_{B} :

$$
\begin{aligned}
\phi_{B} & =\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial j_{0}}=\frac{2}{V} \sum_{\mathbf{k}} u_{k} v_{k} \\
& =-\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{j_{0}}{E_{k}}
\end{aligned}
$$

- j_{0} plays role of constant gap

$$
E_{k}=\sqrt{\left(\epsilon_{k}^{0}-\mu_{0}\right)^{2}+j_{0}^{2}}, \quad \epsilon_{k}^{0}=\frac{k^{2}}{2 M}
$$

Kohn-Sham Non-Interacting System

- Bare density ρ :

$$
\begin{aligned}
\rho & =-\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial \mu_{0}}=\frac{2}{V} \sum_{\mathbf{k}} v_{k}^{2} \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}}\left(1-\frac{\epsilon_{k}^{0}-\mu_{0}}{E_{k}}\right)
\end{aligned}
$$

- Bare pair density ϕ_{B} :

$$
\begin{aligned}
\phi_{B} & =\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial j_{0}}=\frac{2}{V} \sum_{\mathbf{k}} u_{k} v_{k} \\
& =-\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{j_{0}}{E_{k}}
\end{aligned}
$$

- jo plays role of constant gap

$$
E_{k}=\sqrt{\left(\epsilon_{k}^{0}-\mu_{0}\right)^{2}+j_{0}^{2}}, \quad \epsilon_{k}^{0}=\frac{k^{2}}{2 M}
$$

Kohn-Sham Non-Interacting System

- The basic DR/PDS integral in D dimensions, with $x \equiv j_{0} / \mu_{0}$, is

$$
\begin{array}{r}
I(\beta) \equiv\left(\frac{\Lambda}{2}\right)^{3-D} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{\left(\epsilon_{k}^{0}\right)^{\beta}}{\sqrt{\left(\epsilon_{k}^{0}-\mu_{0}\right)^{2}+j_{0}^{2}}}=\frac{M \Lambda}{2 \pi} \mu_{0}^{\beta}\left(1-\delta_{\beta, 2} \frac{x^{2}}{2}\right) \\
\quad+(-)^{\beta+1} \frac{M^{3 / 2}}{\sqrt{2} \pi}\left[\mu_{0}^{2}\left(1+x^{2}\right)\right]^{(\beta+1 / 2) / 2} P_{\beta+1 / 2}^{0}\left(\frac{-1}{\sqrt{1+x^{2}}}\right)
\end{array}
$$

Kohn-Sham Non-Interacting System

- The basic DR/PDS integral in D dimensions, with $x \equiv j_{0} / \mu_{0}$, is

$$
\begin{array}{r}
I(\beta) \equiv\left(\frac{\Lambda}{2}\right)^{3-D} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{\left(\epsilon_{k}^{0}\right)^{\beta}}{\sqrt{\left(\epsilon_{k}^{0}-\mu_{0}\right)^{2}+j_{0}^{2}}}=\frac{M \Lambda}{2 \pi} \mu_{0}^{\beta}\left(1-\delta_{\beta, 2} \frac{x^{2}}{2}\right) \\
+(-)^{\beta+1} \frac{M^{3 / 2}}{\sqrt{2} \pi}\left[\mu_{0}^{2}\left(1+x^{2}\right)\right]^{(\beta+1 / 2) / 2} P_{\beta+1 / 2}^{0}\left(\frac{-1}{\sqrt{1+x^{2}}}\right)
\end{array}
$$

- Check the KS density equation $\Longrightarrow \Lambda$ dependence cancels:

$$
\rho=-\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial \mu_{0}}=\int \frac{d^{3} k}{(2 \pi)^{3}}\left(1-\frac{\epsilon_{k}^{0}}{E_{k}}+\frac{\mu_{0}}{E_{k}}\right) \longrightarrow 0-I(1)+\mu_{0} I(0)
$$

Kohn-Sham Non-Interacting System

- The basic DR/PDS integral in D dimensions, with $x \equiv j_{0} / \mu_{0}$, is

$$
\begin{array}{r}
I(\beta) \equiv\left(\frac{\Lambda}{2}\right)^{3-D} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{\left(\epsilon_{k}^{0}\right)^{\beta}}{\sqrt{\left(\epsilon_{k}^{0}-\mu_{0}\right)^{2}+j_{0}^{2}}}=\frac{M \Lambda}{2 \pi} \mu_{0}^{\beta}\left(1-\delta_{\beta, 2} \frac{x^{2}}{2}\right) \\
+(-)^{\beta+1} \frac{M^{3 / 2}}{\sqrt{2} \pi}\left[\mu_{0}^{2}\left(1+x^{2}\right)\right]^{(\beta+1 / 2) / 2} P_{\beta+1 / 2}^{0}\left(\frac{-1}{\sqrt{1+x^{2}}}\right)
\end{array}
$$

- Check the KS density equation $\Longrightarrow \Lambda$ dependence cancels:

$$
\rho=-\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial \mu_{0}}=\int \frac{d^{3} k}{(2 \pi)^{3}}\left(1-\frac{\epsilon_{k}^{0}}{E_{k}}+\frac{\mu_{0}}{E_{k}}\right) \longrightarrow 0-I(1)+\mu_{0} I(0)
$$

- The KS equation for the pair density ϕ fixes $\zeta^{(0)}$:

$$
\phi=\frac{1}{\beta V} \frac{\partial W_{0}[]}{\partial j_{0}}=-\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{j_{0}}{E_{k}}+\zeta^{(0)} j_{0} \longrightarrow-j_{0} I(0)+\zeta^{(0)} j_{0} \Longrightarrow \zeta^{(0)}=\frac{M \Lambda}{2 \pi}
$$

Calculating to $n^{\text {th }}$ Order

- Find $\Gamma_{1 \leq i \leq n}[\rho, \phi]$ from $W_{1 \leq i \leq n}\left[\mu_{0}(\rho, \phi), j_{0}(\rho, \phi)\right]$
- including additional Feynman rules

- Calculate μ_{i}, j_{i} from Γ_{i}, then use $\sum_{i=0}^{n} j_{i}=j \rightarrow 0$ to find j_{0}
- Renormalization conditions:
- No freedom in choosing $C_{0}(\Lambda) \Longrightarrow \Lambda$'s must cancel!
- Choose $\delta Z_{j}^{(n)}$ and $\zeta^{(n)}$ to convert ϕ_{B} to renormalized ϕ

Calculating to $n^{\text {th }}$ Order

- Find $\Gamma_{1 \leq i \leq n}[\rho, \phi]$ from $W_{1 \leq i \leq n}\left[\mu_{0}(\rho, \phi), j_{0}(\rho, \phi)\right]$
- including additional Feynman rules

- Calculate μ_{i}, j_{i} from Γ_{i}, then use $\sum_{i=0}^{n} j_{i}=j \rightarrow 0$ to find j_{0}
- Renormalization conditions:
- No freedom in choosing $C_{0}(\Lambda) \Longrightarrow \Lambda$'s must cancel!
- Choose $\delta Z_{j}^{(n)}$ and $\zeta^{(n)}$ to convert ϕ_{B} to renormalized ϕ
- Leading order: Diagrams for $\Gamma_{1}[\rho, \phi]=W_{1}\left[\mu_{0}(\rho, \phi), j_{0}(\rho, \phi)\right]$

The "Gap" Equation at Leading Order (LO)

- Γ_{1} dependence on ρ and ϕ explicit \Longrightarrow easy to find μ_{1} and j_{1} :

$$
\mu_{1}=\frac{1}{\beta V} \frac{\partial \Gamma_{1}}{\partial \rho}=\frac{1}{2} C_{0}^{(1)} \rho \quad \text { and } \quad j_{1}=-\frac{1}{\beta V} \frac{\partial \Gamma_{1}}{\partial \phi}=-\frac{1}{2} C_{0}^{(1)} \phi
$$

- "Gap" equation from $j=j_{0}+j_{1}=0$

$$
j_{0}=-j_{1}=-\frac{1}{2}\left|C_{0}^{(1)}\right| \phi=\frac{1}{2}\left|C_{0}^{(1)}\right| j_{0}\left(\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\sqrt{\left(\epsilon_{k}^{0}-\mu_{0}\right)^{2}+j_{0}^{2}}}-\zeta^{(0)}\right)
$$

The "Gap" Equation at Leading Order (LO)

- Γ_{1} dependence on ρ and ϕ explicit \Longrightarrow easy to find μ_{1} and j_{1} :

$$
\mu_{1}=\frac{1}{\beta V} \frac{\partial \Gamma_{1}}{\partial \rho}=\frac{1}{2} C_{0}^{(1)} \rho \quad \text { and } \quad j_{1}=-\frac{1}{\beta V} \frac{\partial \Gamma_{1}}{\partial \phi}=-\frac{1}{2} C_{0}^{(1)} \phi
$$

- "Gap" equation from $j=j_{0}+j_{1}=0$

$$
j_{0}=-j_{1}=-\frac{1}{2}\left|C_{0}^{(1)}\right| \phi=\frac{1}{2}\left|C_{0}^{(1)}\right| j_{0}\left(\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\sqrt{\left(\epsilon_{k}^{0}-\mu_{0}\right)^{2}+j_{0}^{2}}}-\zeta^{(0)}\right)
$$

- DR/PDS reproduces Papenbrock/Bertsch (with $x \equiv\left|j_{0} / \mu_{0}\right|$)

$$
\begin{aligned}
1= & \sqrt{2 M \mu_{0}} a_{s}\left(1+x^{2}\right)^{1 / 4} P_{1 / 2}^{0}\left(\frac{-1}{\sqrt{1+x^{2}}}\right) \xrightarrow{x \rightarrow 0} k_{\mathrm{F}} a_{s}\left[\frac{4-6 \log 2}{\pi}+\frac{2}{\pi} \log x\right] \\
& \Longrightarrow \text { if } k_{\mathrm{F}} a_{s}<1, \frac{j_{0}}{\mu_{0}}=\frac{8}{e^{2}} e^{-\pi / 2 k_{\mathrm{F}}\left|a_{s}\right|} \text { holds }
\end{aligned}
$$

Renormalized Energy Density at LO

- Renormalized effective action $\Gamma=\Gamma_{0}+\Gamma_{1}$:

$$
\frac{1}{\beta V} \Gamma=\int\left(\epsilon_{k}^{0}-\mu_{0}-E_{k}\right)+\frac{1}{2} \zeta^{(0)} j_{0}^{2}+\mu_{0} \rho-j_{0} \phi+\frac{1}{4} C_{0}^{(1)} \rho^{2}+\frac{1}{4} C_{0}^{(1)} \phi^{2}
$$

- Check for Λ 's:

$$
\begin{aligned}
& \frac{1}{\beta V} \Gamma=0-I(2)+2 \mu_{0} I(1)-\left(\mu_{0}^{2}+j_{0}^{2}\right) I(0)+\frac{1}{2} \frac{M \Lambda}{2 \pi} j_{0}^{2}+\cdots \\
& \quad \frac{M \Lambda}{2 \pi}\left(-\mu_{0}^{2}\left(1-j_{0}^{2} / 2 \mu_{0}^{2}\right)+2 \mu_{0}^{2}-\mu_{0}^{2}-j_{0}^{2}+\frac{1}{2} j_{0}^{2}\right)=0
\end{aligned}
$$

- To find the energy density, evaluate Γ at the stationary point $j_{0}=-\frac{1}{2}\left|C_{0}^{(1)}\right| \phi$ with μ_{0} fixed by the equation for ρ
\Longrightarrow same results as Papenbrock/Bertsch (plus HF term)

Renormalized Energy Density at LO

- Renormalized effective action $\Gamma=\Gamma_{0}+\Gamma_{1}$:

$$
\frac{1}{\beta V} \Gamma=\int\left(\epsilon_{k}^{0}-\mu_{0}-E_{k}\right)+\frac{1}{2} \zeta^{(0)} j_{0}^{2}+\mu_{0} \rho-j_{0} \phi+\frac{1}{4} C_{0}^{(1)} \rho^{2}+\frac{1}{4} C_{0}^{(1)} \phi^{2}
$$

- Check for Λ 's:

$$
\begin{gathered}
\frac{1}{\beta V} \Gamma=0-I(2)+2 \mu_{0} I(1)-\left(\mu_{0}^{2}+j_{0}^{2}\right) I(0)+\frac{1}{2} \frac{M \Lambda}{2 \pi} j_{0}^{2}+\cdots \\
\longrightarrow \frac{M \Lambda}{2 \pi}\left(-\mu_{0}^{2}\left(1-j_{0}^{2} / 2 \mu_{0}^{2}\right)+2 \mu_{0}^{2}-\mu_{0}^{2}-j_{0}^{2}+\frac{1}{2} j_{0}^{2}\right)=0
\end{gathered}
$$

- To find the energy density, evaluate Γ at the stationary point $j_{0}=-\frac{1}{2}\left|C_{0}^{(1)}\right| \phi$ with μ_{0} fixed by the equation for ρ
\Longrightarrow same results as Papenbrock/Bertsch (plus HF term)
- Life gets more complicated at NLO
- dependence of Γ_{2} on ρ, ϕ is no longer explicit
- analytic formulas for DR integrals not available

Γ_{2} at Next-to-Leading Order (NLO)

$$
\begin{gathered}
\Longrightarrow-\left(C_{0}^{(1)}\right)^{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \int \frac{d^{3} k}{(2 \pi)^{3}} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{1}{E_{p}+E_{k}+E_{p-q}+E_{k+q}} \\
\times\left[u_{p}^{2} u_{k}^{2} v_{p-q}^{2} v_{k+q}^{2}-2 u_{p}^{2} v_{k}^{2}(u v)_{p-q}(u v)_{k+q}\right. \\
\left.+(u v)_{p}(u v)_{k}(u v)_{p-q}(u v)_{k+q}\right]
\end{gathered}
$$

- UV divergences identified from

$$
\begin{gathered}
v_{k}^{2}=\frac{1}{2}\left(1-\frac{\xi_{k}}{E_{k}}\right) \stackrel{k \rightarrow \infty}{ } \frac{j_{0}^{2} M^{2}}{k^{4}} \quad u_{k}^{2}=\frac{1}{2}\left(1+\frac{\xi_{k}}{E_{k}}\right) \xrightarrow{k \rightarrow \infty} 1-\frac{j_{0}^{2} M^{2}}{k^{4}} \\
u_{k} v_{k}=-\frac{j_{0}}{2 E_{k}} \xrightarrow{k \rightarrow \infty}-\frac{j_{0} M}{k^{2}} \quad \frac{1}{E_{k}} \xrightarrow{k \rightarrow \infty} \frac{2 M}{k^{2}}
\end{gathered}
$$

Next-To-Leading-Order (NLO) Renormalization

- Bowtie with $C_{0}^{(2)}=\frac{4 \pi a_{s}^{2}}{M} \Lambda$ vertex must precisely cancel Λ 's from beachballs with $C_{0}^{(1)}=\frac{4 \pi a_{s}}{M}$ vertices:

(Note that $\delta Z_{j}^{(1)}$ vertex takes $\phi_{B} \rightarrow \phi$)
- How do we see cancellation of Λ 's and evaluate renormalized results without analytic formulas? [but first ...]

Standard Induced Interaction Result Recovered

- Look at $j_{0} \Leftrightarrow \Delta$
- As $j_{0} \rightarrow 0, u_{k} v_{k}$ peaks at μ_{0}
- Leading order $T=0$:

$$
\begin{aligned}
\Delta_{L O} / \mu_{0} & =\frac{8}{e^{2}} e^{-1 / N(0)\left|C_{0}\right|} \\
& =\frac{8}{e^{2}} e^{-\pi / 2 k_{F}\left|a_{s}\right|}
\end{aligned}
$$

Standard Induced Interaction Result Recovered

- Look at $j_{0} \Leftrightarrow \Delta$
- As $j_{0} \rightarrow 0, u_{k} v_{k}$ peaks at μ_{0}
- Leading order $T=0$:

$$
\begin{aligned}
\Delta_{L O} / \mu_{0} & =\frac{8}{e^{2}} e^{-1 / N(0)\left|C_{0}\right|} \\
& =\frac{8}{e^{2}} e^{-\pi / 2 k_{F}\left|a_{s}\right|}
\end{aligned}
$$

- NLO modifies exponent \Longrightarrow changes prefactor
- $\Delta_{N L O} \approx \Delta_{L O} /(4 e)^{1 / 3}$

Standard Induced Interaction Result Recovered

- Look at $j_{0} \Leftrightarrow \Delta$
- As $j_{0} \rightarrow 0, u_{k} v_{k}$ peaks at μ_{0}
- Leading order $T=0$:

$$
\begin{aligned}
\Delta_{L O} / \mu_{0} & =\frac{8}{e^{2}} e^{-1 / N(0)\left|C_{0}\right|} \\
& =\frac{8}{e^{2}} e^{-\pi / 2 k_{F}\left|a_{s}\right|}
\end{aligned}
$$

- NLO modifies exponent \Longrightarrow changes prefactor
- $\Delta_{N L O} \approx \Delta_{L O} /(4 e)^{1 / 3}$

- How does the Kohn-Sham gap compare to "real" gap?

Renormalizing with Subtractions

- NLO integrals over $E_{k}=\sqrt{\left(\epsilon_{k}-\mu_{0}\right)^{2}+j_{0}^{2}}$ are intractable, but

$$
\int \frac{1}{E_{1}+E_{2}+E_{3}+E_{4}}=\int\left[\frac{1}{E_{1}+E_{2}+E_{3}+E_{4}}-\frac{\mathcal{P}}{\epsilon_{1}^{0}+\epsilon_{2}^{0}-\epsilon_{3}^{0}-\epsilon_{4}^{0}}\right]
$$

plus a DR/PDS integral that is proportional to Λ
\Longrightarrow just make the substitution in []'s for renormalized result

- When applied at LO,

$$
\int \frac{1}{E_{k}}=\int\left[\frac{1}{E_{k}}-\frac{\mathcal{P}}{\epsilon_{k}^{0}}\right]+\frac{M \Lambda}{2 \pi}
$$

- Cf. subtraction to eliminate C_{0} in gap equation

$$
\frac{M}{4 \pi a_{s}}+\frac{1}{\left|C_{0}\right|}=\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\epsilon_{k}^{0}} \Longrightarrow \frac{M}{4 \pi a_{s}}=-\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}}\left[\frac{1}{E_{k}}-\frac{1}{\epsilon_{k}^{0}}\right]
$$

Renormalizing with Subtractions

- NLO integrals over $E_{k}=\sqrt{\left(\epsilon_{k}-\mu_{0}\right)^{2}+j_{0}^{2}}$ are intractable, but

$$
\int \frac{1}{E_{1}+E_{2}+E_{3}+E_{4}}=\int\left[\frac{1}{E_{1}+E_{2}+E_{3}+E_{4}}-\frac{\mathcal{P}}{\epsilon_{1}^{0}+\epsilon_{2}^{0}-\epsilon_{3}^{0}-\epsilon_{4}^{0}}\right]
$$

plus a DR/PDS integral that is proportional to Λ
\Longrightarrow just make the substitution in []'s for renormalized result

- When applied at LO,

$$
\int \frac{1}{E_{k}}=\int\left[\frac{1}{E_{k}}-\frac{\mathcal{P}}{\epsilon_{k}^{0}}\right]+\frac{M \Lambda}{2 \pi}
$$

- Cf. subtraction to eliminate C_{0} in gap equation

$$
\frac{M}{4 \pi a_{s}}+\frac{1}{\left|C_{0}\right|}=\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\epsilon_{k}^{0}} \Longrightarrow \frac{M}{4 \pi a_{s}}=-\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}}\left[\frac{1}{E_{k}}-\frac{1}{\epsilon_{k}^{0}}\right]
$$

- Any equivalent subtraction works, e.g.,

$$
\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\mathcal{P}}{\epsilon_{k}^{0}-\mu_{0}}=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\epsilon_{k}^{0}}
$$

Anomalous Density in Finite Systems

- How do we renormalize the pair density in a finite system?

$$
\phi(\mathbf{x})=\sum_{i}\left[u_{i}^{*}(\mathbf{x}) v_{i}(\mathbf{x})+u_{i}(\mathbf{x}) v_{i}^{*}(\mathbf{x})\right] \longrightarrow \infty
$$

- cf. scalar density $\rho_{s}=\sum_{i} \bar{\psi}(\mathbf{x}) \psi(\mathbf{x})$ for relativistic mft

Anomalous Density in Finite Systems

- How do we renormalize the pair density in a finite system?

$$
\phi(\mathbf{x})=\sum_{i}\left[u_{i}^{*}(\mathbf{x}) v_{i}(\mathbf{x})+u_{i}(\mathbf{x}) v_{i}^{*}(\mathbf{x})\right] \longrightarrow \infty
$$

- cf. scalar density $\rho_{s}=\sum_{i} \bar{\psi}(\mathbf{x}) \psi(\mathbf{x})$ for relativistic mft
- Plan: Use subtracted expression for ϕ in uniform system

$$
\phi=\int^{k_{c}} \frac{d^{3} k}{(2 \pi)^{3}} j_{0}\left(\frac{1}{\sqrt{\left(\epsilon_{k}^{0}-\mu_{0}\right)^{2}+j_{0}^{2}}}-\frac{1}{\epsilon_{k}^{0}}\right) \xrightarrow{k_{c} \rightarrow \infty} \text { finite }
$$

- Apply this in a local density approximation (Thomas-Fermi)

$$
\phi(\mathbf{x})=2 \sum_{i}^{E_{c}} u_{i}(\mathbf{x}) v_{i}(\mathbf{x})-j_{0}(\mathbf{x}) \frac{M k_{c}(\mathbf{x})}{2 \pi^{2}} \quad \text { with } \quad E_{c}=\frac{k_{c}^{2}(\mathbf{x})}{2 M}+J(\mathbf{x})-\mu_{0}
$$

Bulgac Renormalization [Bulgac/Yu PRL 88 (2002) 042504]

- Convergence is very slow as the energy cutoff is increased \Longrightarrow Bulgac/Yu: make a different subtraction

$$
\phi=\int^{k_{c}} \frac{d^{3} k}{(2 \pi)^{3}} j_{0}\left(\frac{1}{\sqrt{\left(\epsilon_{k}^{0}-\mu_{0}\right)^{2}+j_{0}^{2}}}-\frac{\mathcal{P}}{\epsilon_{k}^{0}-\mu_{0}}\right) \stackrel{k_{c} \rightarrow \infty}{\longrightarrow} \text { finite }
$$

- Compare convergence in uniform system, in nuclei with LDA

- How do we generalize this?

Energy Interpretation

- Effective actions of local composite operators 30 years ago
- "Sentenced to death" by Banks and Raby
- Underlying problems from new UV divergences
- Connection between effective action and variational energy
- Euclidean space (see Zinn-Justin)

$$
\frac{1}{\beta} \Gamma[\rho]=\langle\widehat{H}(J)\rangle_{J}-\int J \rho=\langle\widehat{H}\rangle_{J}
$$

- Minkowski space constrained minimization (see Weinberg)
- source terms serve as Lagrange multipliers
- Are these properties invalidated by nonlinear source terms?

Energy Interpretation

- Effective actions of local composite operators 30 years ago
- "Sentenced to death" by Banks and Raby
- Underlying problems from new UV divergences
- Connection between effective action and variational energy
- Euclidean space (see Zinn-Justin)

$$
\frac{1}{\beta} \Gamma[\rho]=\langle\widehat{H}(J)\rangle_{J}-\int J \rho=\langle\widehat{H}\rangle_{J}
$$

- Minkowski space constrained minimization (see Weinberg)
- source terms serve as Lagrange multipliers
- Are these properties invalidated by nonlinear source terms?
- Potential ambiguities in the renormalization
- Arbitrary finite part of added counterterms \Longrightarrow shift minima
- Verschelde et al. claim not arbitrary
- Are the stationary points valid in any case?

Kohn-Sham Questions

- How are Kohn-Sham "gap" and conventional gap related?
- Kohn-Sham Green's function vs. full Green's function

$$
G\left(x, x^{\prime}\right)=G_{\mathrm{ks}}\left(x, x^{\prime}\right)+G_{\mathrm{ks}}\left[\frac{1}{i} \frac{\delta \Gamma_{\mathrm{int}}}{\delta G_{\mathrm{ks}}}+\frac{\delta \Gamma_{\mathrm{int}}}{\delta \rho}\right] G_{\mathrm{ks}}
$$

- When do we need the "real" gap?
- What about broken symmetries?
- E.g., number projection for pairing
- How to accomodate within effective action framework?

Better Alternatives to Local Kohn-Sham?

- Couple source to non-local pair field (Oliveira et al.):

$$
\widehat{H} \longrightarrow \widehat{H}-\int d x d x^{\prime}\left[D^{*}\left(x, x^{\prime}\right) \psi_{\uparrow}(x) \psi_{\downarrow}\left(x^{\prime}\right)+\text { H.c. }\right]
$$

- CJT 2PI effective action $\Gamma[\rho, \Delta]$ with $\Delta\left(x, x^{\prime}\right)=\left\langle\psi_{\uparrow}(x) \psi_{\downarrow}\left(x^{\prime}\right)\right\rangle$
- Auxiliary fields: Introduce $\widehat{\Delta}^{*}(x) \psi(x) \psi(x)+$ H.c. via H.S.
- 1PI effective action in $\Delta(x)=\langle\widehat{\Delta}(x)\rangle$
- Special saddle point evaluation \Longrightarrow Kohn-Sham DFT
- DFT from Renormalization Group (Polonyi-Schwenk)

Outline

Extensions to DFT/EFT

Pairing in Kohn-Sham DFT

Summary III

Summary III

- Extensions to DFT by adding external fields
- With kinetic energy and spin-orbit densities \Longrightarrow looks like Skyrme functional!
- Effective action formalism generates Kohn-Sham DFT with local pairing fields \Longrightarrow systematic expansion
- Some of the open issues:
- Energy interpretation and ambiguities
- Number projection
- Renormalization in finite systems
- Efficient numerical implementation
- Implementing low-momentum potential \Longrightarrow Power counting
- Better alternatives?

Figure 6.1. Excitation spectra of the ${ }_{50} \mathrm{Sn}$ isotopes.

